FPGA Applications Guide

Telecommunications and
Networking Edition

=Acto)

i

Actel Corporation, Sunnyvale, CA 94086
© 1995 Actel Corporation. All rights reserved.

Part Number: 5192609-0 February 1995

No part of this document may be copied or reproduced in any form or by any means
without prior written consent of Actel.

Actel Corporation makes not warranties with respect to this documentation and
disclaims any implied warranties or merchantability or fitness for a particular purpose.
Information in this document is subject to change without notice. Actel assumes no
responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed
to any unauthorized person without prior written consent of Actel Corporation.

Trademarks

ACTmap, ALS, Action Logic, ACT, Activator, and Actionprobe are trademarks of
Actel Corporation.

Sun and Sun Workstation are registered trademarks of Sun Microsystems.
PAL and PALASM are registered trademarks of Advanced Micro Devices, Inc.
Synopsys is a trademark of Synopsys Inc.

IST is a trademark of Innovation Synthesis Technology.

Exemplar is a trademark of Exemplar Logic.

Viewlogic and Workview are registered trademarks of Viewlogic Systems, Inc.
ABEL is a trademark of Data I/0 Corporation.

CUPL is a trademark of Personal CAD systems.

All other products or brand names mentioned are trademarks or registered trademarks
of their respective holders.

Table of Contents

Introduction |

1

Using Actel FPGAs to Implement

the 100 Mbit/s Ethernet Standard 3

100Base-X Network Standards 4
Convergence SublayerInterfaces 5

Convergence Sublayer Functions 7
Convergence SublayerDataFlow 9

Using FPGAs to Implement a

100Base-X Convergence Sublayer 11
Convergence Sublayer Transmit Function 11
4BSBEncoder. 16
ACTmap VHDL Synthesis and FPGA Optimization. 18
Transmit Operation 20
Convergence Sublayer Transmit Operation. 24
Transmit State Machine. 25
Convergence Sub-layer Receive Function 27
Carrier Sense and Link Monitor Circuits 41

Conclusion. e 41

Designing High-Speed ATM Switch Fabrics

by Using Actel FPGAs 43
ATM Switching Applications 44
Piplined 16:16 FPGA SwitchFabric 45
16:16 Multipath Interconnect (Min) Switch Fabric. 51
Timing Analysis 59
Conclusion. 59

iii

v

3 Generating/Checking CRC for IEEE 802.3

(LANInterface). 61
CyclicRedundancy Check 62
IEEE 802.3 Frame Structure 62
CRCModuleDesign 64
Design Implementation. 65
VHDL Code Description 67
Synthesis and Optimization. 72
Conclusion 72

Introduction

Telecommunications and Networking is a vast industry from
both a business and technology perspective. This global
market is growing at 10-15% annually and hit over $500 billion
in 1990s. Equally impressive is the rapid innovations and
diversity of the technology used to allow people to
communicate with voice, data, image and video across the
globe. FPGAs are one of those enabling technologies.

The evolutionary nature of developing telecommunications
standards as well as the diminishing product cycle times
demand high speed /high capacity devices that can be
designed in weeks. These are the attributes that have
catapulted FPGAs to the forefront of the telecom engineer's
toolbox. Actel offers four distinct device families targeted at
different design needs. The ACT 1 family offers low cost
integration up to 2,000 gates. ACT 2 and 1200XL families
provide best value high capacity up to 8,000 gates and 50 MHz.
ACT 3 offers high capacity and high speed allowing telecom
applications up to 10,000 gates to operate beyond 75MHz.

This FPGA Applications Guide uses the ACT 3 devices to show
three specific Telecommunications and Networking
applications. Each design provides detailed information on the
application and the design methodology referencing many
diagrams. A disk is appended at the end of the Applications
Guide which contains all the design files needed to use the files
in your next design. Please reference these files to get a clear
and concise view of the schematics. The first two designs were
captured using the Viewlogic schematic editor. All the library
elements used in the design are included on the disk so you do
not need to have a complete Actel system to use the designs.
The third design was written in Verilog HDL and the complete
source file is included on the disk.

The first application describes how to implement the
100Base-X 100 Mbit/s Ethernet Standard in an Actel FPGA.
There is an in-depth discussion of the sub-layer functions
referencing the design files so that any required changes to
meet your needs can be easily accomplished.

The second application presented is a high speed
Asynchronous Transfer Mode (ATM) Switch Fabric. ATM is a
relatively new innovation and used to optimally process
packets at higher rates. The Actel multiplexer based
architecture is ideally suited for ATM applications. Again, full
design details are included to allow you to modify this design
for your needs.

The third application describes the design of a Cyclic
Redundancy Check (CRC) for the IEEE standard 802.3 Local
Area Network interface. CRC offers a way to detect small
changes in blocks of data ensuring integrity during transfers.
This design is implemented in Verilog HDL. Schematics were
generated to show the modules utilized in the design.

For further technical information, contact Actel using your
favorite means of communications:

Technical Hotline 800 262-1060
FAX 408 739-1540
E-mail tech@actel.com

Using Actel FPGAs to Implement
the 100 Mbit/s Ethernet Standard

One of the more recent entrants into the high-speed
networking standards battle is 100Base-X—Ethernet operating
at 100 Mbit/s. This standard is supported by the Fast Ethernet
Alliance and sponsored by several key networking companies
such as Intel, National Semiconductor, Sun Microsystems, and
3Com. This proposed standard involves many of the types of
digital logic functions facing high-speed network designers
and, as will be shown in this application note, can be readily
implemented using Actel FPGA devices.

The emerging 100 Mbit Ethernet market is expected to
mushroom as network performance requirements continue to
grow. Network users are expected to have almost doubled
between 1991 and 1994, and networks will need to provide
these new users with just as much (if not more) bandwidth. A
high-speed Ethernet network could solve the bandwidth
problems for many classes of users while maintaining
compatibility with current equipment and software.

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

100Base-X Network Standards

The 100Base-X proposal uses two established networking
standards to support the 100 Mbit data rate required to
implement the tenfold increase in the 10 Mbit rate of the
current Ethernet standard. The 100Base-X standard keeps the
Media Access Control (MAC) layer the same as the current
Ethernet standard, but it raises the data rate to 100 Mbit/s.
Since the MAC layer was defined independently of
performance level, this increase can be accomplished relatively
easily, and the well-proven behavioral dynamics of the
Ethernet MAC can be retained. The only change required is to
reduce the physical network span to 1/10 of the 10 Mbit/s
distance, resulting in a span of about 250 meters.

This reduced span fits well within current structured wiring
methodologies. Building-floor wiring in modern installations
of Ethernet, such as 10Base-T, are organized as physical stars
with a centralized wiring closet and cable runs of less than
100 meters. For LANSs, this results in a hub-station architecture
with interconnections of less than 100 meters.

At the physical layer, 100Base-X leverages off the proven FDDI
standard for 100 Mbit/s communications using a full-duplex
125 Mbit/s Physical Media-Dependent (PMD) sublayer. This
supports fiber optic, shielded twisted-pair (STP) and
unshielded twisted-pair (UTP) wiring. Combining the MAC
layer of Ethernet to the PMD layer of FDDI requires a
convergence sublayer (CS) between them. Using the CS,
100Base-X maps the PMD’s constant signaling system to the
packet-oriented half-duplex system imposed by the Ethernet
MAC.

100Base-X Network Standards

Convergence Sublayer Interfaces

The MAC transmits data to the convergence sublayer in the
form of 4-bit words (Figure 1). This data is then encoded into 5-
bit groups, serialized, and transmitted by the CS to the PMD
sublayer as the transmitPMD signal.

Received data is sent from the PMD to the CS as the
receivePMD signal and is synchronized with the 125 MHz
clock. Note that the PMD also generates signalDetect when
data is detected on the line. The CS decodes the serial data,
converting the input 5-bit code groups into 4-bit hex characters
and sends it to the MAC as the receiveMAC signal. Note that
the PMD extracts the clock from the serial bit stream input. The
125 MHz frequency is recovered from the input data stream by
the PMD clock circuits in the CS. In addition, receiveError is
generated by the CS to indicate to the MAC that an error has
occurred during reception. The carrierSense signal is provided
to the MAC to indicate that the line is active. The
collisionDetect signal notifies the MAC if a collision has
occurred.

This application note will show you how to use Actel FPGAs to
develop a complete convergence sublayer. It will subdivide the
CS into its functional divisions and will show you how each
can be implemented using Actel ACT 3 FPGAs.

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

MEDIA ACCESS CONTROLLER (MAC)

transmitMAC collisionDetect (receiveError)
4
carrierSen
transmitEnable rrierSense receiveMAC

CONVERGENCE sublayer (CS)

transmitPMD receivePMD

signalDetect 125 MHz
clock

PHYSICAL MEDIA DEPENDENT (PMD) LAYER

Figure 1. Convergence Sublayer Interfaces

Convergence Sublayer Functions

Convergence Sublayer Functions

Figure 2 shows the basic dataflow in the convergence sub-
layer. The CS receives transmit data from the MAC as 4-bit
words designated transmitMAC. These 4-bit words are
encoded into 5-bit symbols (designated TxSYM) that are
shifted out to the PMD at the 125 MHz clock rate.

MAC (100 Mbit/s)
) [
transmitMACH~ (receiveError) 4receiveMAC
Y
3l2[t]9 JEil
-BIT WORDS 4 4-BIT WORDS
Y
4-BIT-TO-5-BIT 5-BIT-TO-4-BIT
(4B5B) ENCODER (5B4B) DECODER
TxSYM A 5-BIT GROUPS
5-BIT RxSYM|4 0
—1GROUPS Serle g o
1
ﬂm SERIAL TO PARALLEL
TxBIT
CONVERGENCE sublayer (CS)
transmitPMD receivePMD
PMD (125 Mbit/s)

Figure 2. Data Flow in Convergence Sublayer

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

Received data at a 125 Mbit/s rate is sent from the PMD to the
CS as the receivePMD signal. The CS formats input data to
produce 5-bit symbol groups. Detection of the two-symbol
sequence,] and K, marks the beginning of a packet and starts
the synchronization of the input data stream. The 5-bit groups
are then decoded by the 5B4B decoder and sent to the MAC as
a stream of 4-bit words until the packet’s end is detected by the
reception of the end-of-packet delimiter characters, T and R.

The 4B5B encoding/decoding method, which is a subset of the
standard FDDI 4B5B encoding method, employs 5-bits to
encode/decode both 16 data (hex) characters and the signaling
symbols required to indicate the start and end of the data
packet. In addition to the 16 valid 4-bit-binary code groups
shown in the Table 1, there are five special control signals used
to indicate start of packet (J followed by K), end of packet (T
followed by R), and idle (I). A number of other 5-bit
combinations are designated as invalid and represent channel
errors or repeater collision artifacts. Thus, the physical line
idles until the start of a data packet is indicated by a J symbol
followed by a K. Data symbols then follow with the end of data
being indicated by a T symbol followed by an R. Idle symbols
immediately follow. The job of the convergence sublayer is to
extract the control characters or idles from the packet and then
send a data-only packet to the MAC. Thus, the MAC never
receives idle, JK, or TR symbols. When receiving, the CS
reverses the process, encapsulating and encoding the data
from the MAC for transmission by the PMD.

Convergence Sublayer Functions

Convergence Sublayer Data Flow

The block diagram of the convergence sublayer is shown in
Figure 2. The receive state machine generates receiveMAC data
and receiveError for the MAC based on the receivePMD data
input from the media. The transmit state machine accepts
transmitMAC and transmitEnable from the MAC and
generates the transmitPMD data to the physical layer. The
collisionDetect function is generated by the transmit state
machine, based on transmitEnable and the receive state
machine’s receiving signal.

The Carrier Sense function asserts the carrierSense signal when
the convergence sublayer is either transmitting or receiving,
based upon the two corresponding internal signals generated
by the Transmit and Receive functions. The Link Monitor
function generates linkTestFail based on the PMDs
signalDetect. LinkTestFail is an internal signal unused by the
MAC and can optionally be used by your network
management entity.

Transmitted data, shown as the transmitMAC signal in Figure
3, indicates that MAC data is available and is registered in the
convergence sublayer logic. Groups of 4 data bits in the
transmit bit stream are converted to 5-bit code groups by 4B5B
encoding prior to transmission on the 125 Mbit/s PMD. Note
that TxDATA, TxSYM, and TxBIT are all different views of the
same data, but at different data rates.

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

10

MAC (100 Mbit/s)

transmitMAC collisionDetect ¥ carrierSense receiveMAC 4
4
// // // //
// A //
transmit Enable (receiveError)
CONVERGENCE
y j sub-layer (CS)
Transmit o ciirr::e;ASeqse/ Receive
Circuits ttind —1 Monttor Circuits
transmitting Gircuits
| ! L [[A A |
P receiving i receivePMD |
linkTestFail Y
125 MHz clock g
. A 125 MHz
' transmitPMD SignalDetect clock

PMD (125 Mbit/s)

Figure 3. Convergence Sublayer Functional Block Diagram

Using FPGAs to Implement a 100Base-X Convergence Sublayer

Using FPGAs to Implement a
100Base-X Convergence Sublayer

As will be seen in the following sections, the 100Base-X
convergence sublayer can be implemented as eight functional
blocks, each of which forms the subject of a separate
application discussion. These are listed under the three main
headings: the transmit function, the receive function, and the
carrier-sense and link-monitor circuits.

Convergence Sublayer Transmit Function

The design of the transmit function shows some common
design techniques used in high-speed FPGA applications. The
main function of this block is to provide the requested symbol
data to the PMD at the 125 Mbit/s serial rate. This requires the
4-bit MAC data words to be 4B5B encoded and then shifted out
using the 125 Mhz clock. In addition, the serial data stream
needs to be framed using the leading /J/K/ symbol pair and
trailing /T/R/ symbol pair. When data is not transmitting, it is
replaced by the constant transmission of idle symbols. The
transmit function is divided into two blocks as shown in
Figure 4:

o The Transmit State Machine
o The Data Path

11

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

ansm

REOS Dacode

CLR @—Chsr

CLR ———Chcur .
EXT_CLK2S —perx oAT_atei0)

EXT_CLK2S5 ——pcrocx

ateion
Gero) [3 0)
Tx_DATA[d:O__ Qr3:0)
PATA(410)
a0}

MAC DATA oterol =

_ta10)
RESULT(410)
T_Symbol GND, VDD, VDD, GND, VDS —ATAI_(410)

R_Symbol GND,GND, VDD, VDD, VD —PATA2 _ (4101 RSLT[4:0]

Data Path

s1a SOoA
srEaS
REGS VDD [}————HIPTEN
LOAD }———fnanLE
CLR f—Chcrr RESET ff——CpcLr
cLk12S borocx
EXf_CLK25 —pcrock . -— TX_PMD
RSLT(4:0) BEES—PATAI (410} “D._smn;;:‘
. [— roUt—wm
VDD,V‘DD.GND,GND.GNE_—DATA!_I;-:]"T“ Qolero AT 014101 ATAL410)
a0 o1
VDD, GND, GND, GND, VDUREEEE—PATAZ_ (4:0) DAT_3 (4101 [PATAL4:0)

VDD, VDD, VDD, VDD, VDLEEEEE—PATAC_ (410} Serial_out

> Q _l_. LOAD
EXT_CLK2S

prcie

CLK125 f————pPCLK
CLR

siB soB
RESET

J_Symbol
K_Symbol
IDLE_Symbol

siN— gsia
TEST_EN g——(r
Tranemit,,,| gsoa

TX_ENB——— = state Transmit State

Machines? @ s1iBe

EXT_CLK25 ———Dcrx & soB MaChine

E— T T
TSM

Figure 4. Convergence sublayer Transmit Functions

12

Using FPGAs to Implement a 100Base-X Convergence Sublayer

Data Path The data path portion of the transmit block is shown in
Figure 4. The main flow of data comes from the MAC at
25 MHz with a 4-bit-wide data word and a control signal that
enables transmission. When MAC data is not being
transmitted, the convergence sublayer sends continuous idle
(I) symbols to the PMD. When the TransmitEnable signal
becomes active, a /J/K/ symbol pair is transmitted to indicate
the beginning of a data packet. MAC data symbols then follow
and are encoded into 5-bit symbols using the 4B5B encoding
scheme shown in Table 1. The end of MAC data is indicated by
the TransmitEnable signal going inactive and a /T/R/ symbol
pair is inserted at the end of the data packet. Finally, the CS
logic returns to transmitting idle symbols.

Table 1. 4B5B Symbol Coding

5-bit Code Group 4-Bit-Binary

Symbol (in Convergence Code Group Interpretation/Function
sublayer) (in MAC)
0 11110 0000 Data character: OH
1 01001 0001 Data character: 1H
2 10100 0010 Data character: 2H
3 10101 0011 Data character: 3H
4 01010 0100 Data character: 4H
5 01011 0101 Data character: 5H
6 01110 0110 Data character: 6H
7 01111 0111 Data character: 7H
8 10010 1000 Data character: 8H
9 10011 1001 Data character: 9H
A 10110 1010 Data character: AH
B 10111 1011 Data character: BH
C 11010 1100 Data character: CH

13

Using Actel FPGASs to Implement the 100 Mbit/s Ethernet Standard

Table 1. 4B5B Symbol Coding (Continued)

5-bit Code Group 4-Bit-Binary

Symbol (in Convergence Code Group Interpretation/Function
sublayer) (in MAC)
D 11011 1101 Data character: DH
E 11100 1110 Data character: EH
F 11101 1111 Data character: FH
1 11111 -- Idle character transmitted between packets
J 11000 -- First control character in start-of-packet delimiter
K 10001 - Second control character in start-of-packet delimiter
T 01101 - First control character in end-of-packet delimiter
R 00111 -- Second control character in end-of-packet delimiter
\Y 00000 -- Invalid character
\Y 00001 - Invalid character
\Y 00010 - Invalid character
\Y 00011 -- Invalid character
\Y 00100 - Invalid character
\Y 00101 - Invalid character
\ 00110 -- Invalid character
\Y 01000 - Invalid character
\Y 01100 - Invalid character
\ 10000 - Invalid character
\' 11001 - Invalid character

14

Using FPGAs to Implement a 100Base-X Convergence Sublayer

The implementation of the described functions involves
selecting six different symbol sources for PMD data: the I
(idle), J, K, T, and R symbols and the 4B5B encoded MAC data.
In addition, a TestData input can be used to provide raw
unencoded data to the PMD for use in diagnostics and testing.
This selection is accomplished via the multiplexer in front of
the output shift register. One multiplexer selects from the I, J
and K symbols or from another multiplexer output. The other
multiplexer selects from the T and R symbols and encoded the
MAC data. Note the additional path around the encoder,
which allows raw (unencoded) data to be provided to the
PMD. This is used for system test and diagnostics and is the
only way to inject known errors into the system, simulating
collision remnants and exercising the boundary conditions of
the standard.

The Actel logic implements multiplexers directly in a single
logic module so, by inspection, the path through the
multiplexer tree requires only two module delays and can
easily meet the 25 Mhz performance requirement. The 4B5B
encode block also requires only two logic levelsand can be
designed via schematics or via equations. The equations can be
automatically compiled using Actel’s ACTMap tool and then
incorporated into the schematic.

15

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

4B5B Encoder

16

Symbol encoding of the 4-bit data words transmitted from the
MAC into the 5-bit coded groups required by the convergence
sub-layer and the PHY layer employs a modified version of the
coding used in FDDI-based systems. The differences from
FDDI are that the symbols S, Q, and H are not used and that R
is now used as part of the /T/R/ end-of-packet delimiter
character group.

Table 1 lists all 32 5-bit data- and special-symbol codes that the
PMD can send to the convergence sublayer. The 16 data
characters—0 through F (hex)—are shown in Table 1, both as
5-bit code groups and as their 4-bit binary equivalents, as sent
by the CS to the MAC. The idle character I and the control
characters], K, T, and R are shown in Table 1 in 5-bit form only,
because they are not used in the MAC. The same applies to the
remaining 11 possible 5-bit combinations that might be
received on the media, all of which have no meaning to the
decoder and hence are treated as invalid. For simplicity, each of
the 11 invalid symbols is designated as V.

Encoding of 4-bit data words into 5-bit symbols can be
accomplished in a few simple logic equations, as shown in the
PALASM entry format shown in Figure 5.

The above equations translate each bit in sequence. Bits D0-D3
are the 4-bit data word input to the decoder, and B0-B4 define
the 5-bit output symbols from the decoder. Thus, in the first
equation, bit DO is always the same as the bit B0, as can be seen
by inspection of Table 1. The decoding equations for the
remaining output bits (bits B4 through B1) are derived in a
comparable fashion.

Using FPGAs to Implement a 100Base-X Convergence Sublayer

;Encoder for 4B to 5B

;Used in 100 Mbit Ethernet application
CHIP 4b5b generic

clk rst d3 d2 d1 d0 g4 g3 g2 gl g0

EQUATIONS

Q
N
o

do

qgd.clkf
qg3.clkf
q2.clkf
ql.clkf
q0.clkf

qgd.rstf
qg3.rstf
g2.rstf
qgl.rstf
q0.rstf

d3 +
d2 +
dl +
(/d1

o onounon

(/a2 * d1) + (/d2 * /40)

(/@3 * /d1)

(/a3 * /d2 * /40)

* /d0) + (d3 :+: d2) + (d2 * /d4l)

clk
clk
clk
clk
clk

/rst
/rst
/rst
/rst
/rst

Figure 5. PALASM?2 Description for the 4B5B Encoder

17

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

ACTmap VHDL Synthesis and FPGA Optimization

18

These equations are then processed by ACTmap, a
computer-aided design tool for working with the Actel families
of FPGAs. It performs three basic functions:

e PALASM 2, VHDL to netlist translation
* Netlist-optimized mapping
¢ /O insertion

ACTmap reads the PALASM 2, or VHDL source file and
translates it into either an EDIF or an ADL (Actel Design
Language) output file or Verilog netlist. The output file that it
generates is optimized for a specific family of Actel FPGAs
(ACT 1, ACT 2, 1200XL, or ACT 3).

You can specify whether the design should be optimized for
area or speed. The PALASM 2 description for the 4B5B encoder
shown in Figure 5 was processed by ACTmap, and the
following results where achieved:

¢ Area = 9 modules
* Estimated worst-case delay = 8.80 ns

These results easily meet the 25MHz requirements of the
transmit function and show the speed and capacity capabilities
of the ACT3 architecture. The schematic logic implementation
of the 4B5B encoder (see Figure 6) shows the compact nature of
the final implementation.

Using FPGAs to Implement a 100Base-X Convergence Sublayer

CMB8_2244_1

vDD i} :_*_Dg ¥| cM8_2244_4 Qap
I 2 o ¥| [o) =L
3 1
cM8 2 DFC1B
00 3
ok o1 cM8 cLK ——pCLK
10 s00 CLR
11 o1
10
cM8_2244_2 11
o ¥ cMB_2244_7 RST Qip
GND : 2) Y| ol—<1g
3 1
cM8 2 DFC1B
oo 3
PO [s01 cMa cLK j——pCLK
1o oo CLR
11 o1
10
D3 13
RST

Q2P
cMB_2244_3 o i o222 g
1
o Y} [—————Dz DFC1B
1 3
2 cMa CLK j——)CLK
3 oo
cme o1 CLR
lsoo S10
IS01 11
s10
11 cMB_2244_5 RST o3P
o < ol 93 g
1
o2 g 2 pFc1B
cme CLK f———)pCLK
3]
S2 CLR
ol g 26
S11
RST
Qor
Qo
cog——p o-2°pm
DFC1B
B——)CLK
CLK Q(4:0]
D(3:01] CLR

Figure 6. Transmit Path: 4B5B Encoder FPGA Logic

19

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

Transmit Operation

20

Transmit operational states are shown in block diagram form
in Figure 7.

The actions shown in Figure 7 are assumed to be
instantaneous, although, for simplicity, some time-sequenced
events are contained in single states. Unconditional state
transitions are unlabeled. Conditional state transitions occur
when explicitly shown by the accompanying condition; a state
is repeated until some transitional condition is detected. States
are atomic in that conditions are evaluated only at the
completion of the state's actions. Transitions shown without
source states, notably linkTestFail, are evaluated at the
completion of every state and take precedence over other
transition conditions.

Using FPGAs to Implement a 100Base-X Convergence Sublayer

RESET

IDLE state

transmitting « FALSE

> collisionDetect « FALSE
TXSYM « |

VtransmitEnabIe

La——IlinkTestFail

START state

transmitting < TRUE
collisionDetect « receiving
- waitNibble

TxSYM « J

waitNibble

TxSYM « K

+ transmitEnable

TRANSMIT state
collisionDetect « receiving
waitNibble

TxSYM « 5B4B (TxDATA)

‘ NOT (transmit enable)

END state

transmitting < FALSE

- collisionDetect « FALSE
TXSYM T

TxSYM « R

Figure 7. Convergence Sublayer Transmit Operation

21

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

Convergence Sublayer Transmit Operation

22

The transmit state block diagram begins with the IDLE state.
The transmitting and collisionDetect signals are initialized as
FALSE and the IDLE symbol is continuously supplied to the
PMD. Once the MAC has data to transmit, it asserts
transmitEnable and the START state is entered. The
transmitting signal is asserted (set to TRUE) to indicate to the
Carrier Sense function that data is being transmitted. In
addition, collisionDetect is set to the level of the receiving
signal. The receiving signal comes from the Receive function; if
it is also asserted, a collision has occurred. The waitNibble
function synchronizes the MAC data with the PMD clock. The
first 8-bits of the MAC preamble are replaced with the

/J/K/ symbol pair. If transmitEnable becomes FALSE, the
machine makes a transition back to IDLE. If transmitEnable
stays asserted, the next state becomes TRANSMIT. During
TRANSMIT state, collisionDetect is still set to receiving. The
MAC data (TxDATA) is encoded using the 5B4B function, and
encoding continues until transmitEnable is disabled. Once
transmitEnable is deasserted, the machine makes a transition
to the END state. In the END state, transmitting and
collisionDetect are both FALSE. The /T/R/ symbols are
transmitted to indicate the end of data, and the machine moves
to the IDLE state. The assertion of linkTestFail (by the Link
Monitor function) causes an immediate transition to the IDLE
state and takes precedence over any MAC request.

Using FPGAs to Implement a 100Base-X Convergence Sublayer

Transmit State Machine

The state-diagram implementation of transmit operation is
shown in Figure 8. The state machine starts in the IDLE state
and transmits the idle symbol (I) until transmitEnable (TE) is
TRUE. As long as TE is TRUE, the machine proceeds through
the J and K states, sending first the] symbol and then the K
symbol to indicate the start of a data packet. The machine then
transmits data until TE goes FALSE (i.e., transmit not enabled
(/TE)), after which a T and an R are transmitted, indicating the
end of the data packet. The state machine then returns to the
IDLE state and waits for the next data packet. The test mode
may be entered from the IDLE state by asserting Test mode
(TM). In this mode, any 5-bit code symbol may be transmitted,
thus allowing known error conditions to be injected onto the
network.

The logic implementation of the transmit state machine is
shown in Figure 9. Each state is encoded into the transmit state
machine flip-flops to allow symbol selection in the transmit
multiplexer. (See Note on page 26.) These transitions are
controlled by the input logic for each flip-flop and depend only
on the TE signal and the current state.

The resulting design employs only 11 logic modules and runs
well in excess of the required 25 MHz speed.

23

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

24

linkTestFail

DATA
Send data

LEGEND

TE = Transmit enabled

/TE = Transmit not enabled
TM = Test mode

/TM = Normal mode

Figure 8. Transmit State Machine Diagram

Using FPGAs to Implement a 100Base-X Convergence Sublayer

»TseESTEND

et

133 ats
-
3
z
= -
. -7
vis €TseEsTeMD
8TseEsTeMD . Tie
ot)
ae % 5
avis SiF -l
w1 = £
N1o¢——— 1> s ! - oS
wtosa 3 ®__ o
T
v
c 7
_ _ sTsecSTeMD -
TrTsecsTemo
asu —]
:w BT
nnon'h'l. 25 o r
1S o)
w1ot—8 o “d w7 aaa
wtosa z
= — —
o z-secsTewo
- _ sTsBESTEBWD b33
oITsBESTeMD o1 x
sy Tt W 1o
aats o1 -
1S ol
w8 o Ll 3 >
wtoaa
L ~em>
6TseEs oM secsTe
LTs8ESTOMD
asu T
:M T ot az
avos o1 aan o T
|15 = . ey
srot——= s s
w12 < < # aan
wtoaa z
- 3
T |

Figure 9. Transmit State Machine Schematic

25

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

Note This state-machine implementation differs from the
commonly seen one-hot approach in that the states are
encoded into four D flip-flops rather than a single
flip-flop per state. Also, the state-machine encoding
shown in this application is more efficient than the
one-hot approach because the state flip-flops can drive
the data-path multiplexer directly, eliminating the
additional encoding logic that would be required to
handle the one-hot state variables and to select desired
multiplexer sources.

26

Using FPGAs to Implement a 100Base-X Convergence Sublayer

Convergence Sub-layer Receive Function

The receive functions of the convergence sublayer are shown in
the block diagram in Figure 10. These functions are discussed
in the following sections.

* Shift register, sync detect, and squelch
* Clock generation
* 5B4B symbol decoder

* Receive state machine

Receive Operation

The sequence of receive states is shown in the receive-
operation diagram, Figure 11. The receive state machine tracks
the received symbols to ensure that a complete packet has been
received and indicates the current line state to the next layer of
the protocol. The receive process (see Figure 11) involves two
separate sets of states. The constituents in the first set—the
IDLE, SCAN, CARRIER, and ALIGN states—are prealigned
and operate on the raw input bits using RxBIT. The remaining
states are aligned and operate on the input data stream as
symbols (RxXSYM). Output data, designated RxDATA, is sent
directly to the MAC in these states.

27

Using Actel FPGASs to Implement the 100 Mbit/s Ethernet Standard

RX_PMD
SDATA
RESET B —QRESET Shift/sync w
Detect -
Gxawbe 9
CLK125 @& >cm<125 R B U)
K K R oK x u
RESET
Clock TI1sYI
Jisy B[9:5
Derkizs Gen t 1
INT_CLK2S
.4
CLR @—(o Woangne O
SEEEE
>CLK125 ; § UI Symbol
w Decode

INT_CLK2S |

LNK_T/F I}

INT_CLK25

D(3:0] II V IKTR

D[3:0]

crr —Q

DI3:0]
INT_CLK2S
Receive

CLR State
Machine

S
ILNK_T/F

RXDATA[(3:0] RX_ERR RX

RX

RXDATA([3:0)] RX_ERR

Figure 10. Convergence Sublayer Receive Functions

28

Using FPGAs to Implement a 100Base-X Convergence Sublayer

IDLE state
RESET — . .
] receiving « FALSE <— linkTestFail

(receive error) < FALSE

Y
SCAN state
waitBit

squeich| RxBIT [0] = 0 AND

j RxBIT [9:2] # 11111111
CARRIER state
RxDATA « 0000
receiving « TRUE

RxBIT [9:0] = 111111111 JALIGN state (wait for JK)
no start-of-packet waitBit

RxBIT [9:0] = 1100010001

START state (replace JK)
RxDATA « 0101
waitQuint
RxDATA « 0101
1 RxSYM [1]
, RxSYM [1] s
END state (skip TR)] ""_7R ° [RECEIVE state]= PATAI DATA sate
receiving « FALSE [waitQuint - (receiveError) « FALSE
waitQuint RxDATA «
waitQuint ' 4B5B (RxSYM [1])
else
PREMATURE END state N py——
(receiveError) « TRUE T ROR state
waitQuint RxSYM[1:0]=1I (receiveError) « TRUE

Figure 11. Convergence Sublayer Receive Operation

29

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

30

The RECEIVE state sequence begins with the IDLE state. The
receiving signal and the optional receiveError signal are
initialized to FALSE. The SCAN state is entered next and the
waitBit function synchronizes the machine to the received data
stream. At this point, the squelch function filters out noise
events by not allowing a transition to the CARRIER state
unless two nonconsecutive zeros are detected. Because
carrierSense is used by the MAC for deferral purposes, it must
be asserted on the detection of any received signal (i.e.,
received energy, or non-IDLE input) whether or not it's an
actual packet. Since carrierSense is also used to detect
collisions, it's important to avoid triggering on noise,
specifically a single-bit event. If CARRIER is entered, RxDATA
is initialized to all zeros (0000) and receiving is set to true.

The system enters the ALIGN state next. In ALIGN, the start of
packet symbols /J/K/ is searched for. If at least two idle
symbols (1111111111) are found instead, no start of packet has
been detected and the machine moves to the IDLE state. If the
/J/K/ symbols are successfully found, the START state is
entered. In START, the MAC preamble data (55) is substituted
for the received /J/K/ symbols. The waitQuint function
assures that MAC data is not overwritten. The RECEIVE state
is entered next. Usually, in the RECEIVE state, valid data is
received and a transition to the DATA state is made. In the
DATA state, receiveError is deasserted and 4B5B decoded data
is sent to the MAC.

Using FPGAs to Implement a 100Base-X Convergence Sublayer

From the DATA state, the machine returns to the RECEIVE
state. If, during the RECEIVE state, two idle symbols are
received, the PREMATURE END state is entered, receiveError
is asserted, and IDLE is reentered. If, in the RECEIVE state,
invalid data is received, the DATA ERROR state is entered,
receiveError is asserted, and RECEIVE is reentered. Invalid
data is not transmitted to the MAC. If, in the RECEIVE state, a
/T/R/ symbol pair is detected, the END state is entered,
receiving is deasserted, and IDLE state is reentered.

Shift Register, Sync Detect, and Squelich

The shift register, sync detect, and squelch circuits (Figure 12)
are responsible for shifting serial data at the 125 Mhz line rate
and detecting clock synchronization symbols. Once a sync
symbol is detected, the clock generation state machine adjusts
the 25 Mhz symbol clock by stretching it the required number
of 125 Mhz clocks to align it with an input symbol. Control
symbols in the input data stream can then be captured
correctly by the 25 Mhz clock and decoded by the 4B5B decode
block.

Serial data is clocked into the shift register and sync detect
block by using the 125 Mhz clock. Sync symbols are detected as
the data shifts. As shown in Figure 12, only a single logic level
is required to detect each of the five important sync signals
(K, T,R and I). The code groups corresponding to each of these
symbols are shown in Table 1 on page 13.

31

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

sheten Tom_s1ro Br9:51 PTeST
VDD g——fn1rTen —
RESET @——ChcLr RESET ——Chctr
CLK125 —fcrocx CLK125 —crocx
SDATAR— 1,050 | mmmB (9:01] G370 | mmaNB[2:1] ,NB[6:5])
PPATA(3:0])
B[1:0),B[5:4]

Be B—2X
Bomg—3
Q]] o v
NBES B anonc)) -
orcin KSYM =
CLK B7 — brein TSYM
(crr B8g——={ cLki2s .__.‘C:ITR
RESET RESET
B5 B—2X NBS g—2X
56 #—% NE6 B——3
B7m Sges o ol - B3 m <Y = -
BEW = preis TSYM BO g——21— orcin I2SYM
Bog—=| cuxazs ._,ch:R BaAm El crkizs 'Cé':R
RESET RESET

Bamp—4 =
BO <)X =) NB2 3——(
: ol Pl B3 B <)X 3l -
os —E e bl BO I—D"‘/ orcin Il1syM
LK125 —PpCLK
B2 < CLR B4 .————Ji CLK125 —pCLK
CLR

RESET.————j
RESET

BO R
B4
T
B3 5 N -) mso
NB1 B orcia
orcis
NB2 A CLK125 pCLK
CLK125 gg—pCLK L CLR
CLR
RESET.—-———T
RESET
B7
B
B8 Y
NBS <) P9
NB6 D prcis
CLK125 g—pCLK
CLR

RESET

Figure 12. Shift Register, Sync Detect, and Squelch Schematic Diagram

32

Using FPGAs to Implement a 100Base-X Convergence Sublayer

Note The shift register generates both the true and
complemented versions of bits B3, B4, B8, and B9. This is
required to implement single-level decode for the I
symbol because the ACT3 logic module implements five-
input AND/NAND gates with at least two inverted
inputs. The technique of providing additional registers
with inverted outputs is common when implementing
logic functions using fine-grained antifuse FPGAs. The
additional registers cost little because of the fine-grained
logic module, and they can be used where needed to
provide additional logic signals. The abundant routing
resources available with antifuse FPGAs also supply the
additional routing required to create these additional
logic signals.

The squelch function filters out noise events from the received
data stream. Zeros are ignored unless there are two
noncontiguous zeros within the first 10 bits. At first glance, it
would appear that the logic to detect two noncontiguous zeros
in a 10-bit word should be quite extensive. However, once it is
observed that this function is used only on a serial data stream,
several simplifying logic reductions can be made. First, check
the least significant bit (BO) for a zero, and then check that at
least one of the higher-order bits (only B2 through B9, since B1
is contiguous) is also zero. Any other combination is simply a
shift from B0. However, the resulting logic equation for a
squelch state (S),

S:= /B0*(/B2+/B3+/B4+/B5+/B6+/B7+/B8+/B9)

is too large to implement in a single FPGA logic level.

33

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

34

To simplify this approach, note that because data is being
serially shifted in, higher-order terms can be precomputed and
then combined with the critical B0 signal using a single logic
level. The logic that results can be expressed by the following
three equations:

S1:= /(/B1+/B2+/B3+/B4)
S2:= /(/B5+/B6+/B7+/B8)
S:= /BO*(/S1+/S2)

These three equations are the ones actually implemented in
FPGA form, (see Figure 12.)

Note As shown in Figure 12, bits B1-B4 and bits B5-B8 are
used with registers to develop the two intermediate
terms S1 and S2. These two are then ORed with bit B1 to
develop the final squelch function (S). This form of
pipelined operation works well in serial data
applications and will almost always result in faster and
more area-efficient FPGA designs.

Also, notice that the extra inversions on the S1 and S2 terms
(Figure 12) are used because NOR functions with inverted
inputs map more easily into in a single ACT3 logic module.
Synthesis software like Actel's ACTmap Program figures this
out automatically, allowing the designer to focus on
architectural and functional issues instead. Thus, what initially
looks like a difficult decoding problem can be significantly
simplified to only three logic modules that operate easily at the
serial data rate.

Using FPGAs to Implement a 100Base-X Convergence Sublayer

Clock Generation

The clock generation state diagram and the clock generation
schematic diagram are shown in Figures 13 and 14,
respectively. The clock generation logic divides the 125 Mhz
serial clock by 5 to generate the 25 Mhz symbol clock, Clock25.
The Clock25 signal (Figure 13) is stretched when a sync symbol
is detected, to align it with the 5-bit symbols. This is
accomplished by a transition to the QO state when the JK signal
(start of packet) is active. Entry into QO synchronizes the

25 Mhz clock (Clock25, the output from states Q2 and Q3) and
the load signal. The load signal is active every 5 clocks after
synchronization, which captures the 5-bit symbol from the
aligned data stream. The symbol can then be safely captured
by the 25 Mhz clock, Clock25 in the aligned symbol register
(ASR). The schematic implementation for this process is shown
in Figure 14.

JKSYM

Figure 13. Clock Generation State Diagram

35

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

oran
JuMP B ° e
ora
CLK12S W LK
Qo
os 2
(=] Y
JUMP g— onsa Q ;o1
RESET L-J oer
CLK12S @ LK
JUMP.——QF_\
B Y
RESET & Q| mo2
Q1 ._Cl——/ ora
CLK12S W LK
JUMP[—A}_\
B Y
RESET Q |Q3
oz .___&!——/ or1
CLK125® LK
JUMP.——QF_\
B Y
RESET i Q] FYeY
Q3.___£F—/ ora
CLK125® LK
JUMP.—Jﬁ__\
B Y
RESET i o——mos
Qa ._C}—/ ora
CLK125® LK
TsYMB—2\v Tk
KSYM Q a
orcis
CLK125 @ CLK
CLR
RESET i T
JK R Q| A JUMP
orcia
CLK125 & CLK
CLR
RESET i}
Q2 - 'Y A
Q1 B P @

CLK125®

cLKINT

CLK25

Figure 14. Clock Generation State Machine Schematic

36

Using FPGAs to Implement a 100Base-X Convergence Sublayer

Note Each state in the machine usesa single register. This one-
hot (i.e., one register at a time) type of state machine
design uses the register-intensive nature of fine-grained,
antifuse-based FPGAs to reduce the logic complexity
required to determine next-state transitions. In
traditional encoded designs every state bit is needed to
determine which state the machine is in. This can make
for large transition terms in complex state machines.
FPGAs, on the other hand, can use the additional register
available to reduce the logic complexity, because only a
single register output is required to determine the state of
the machine. Thus, the FPGA's narrow, high-speed logic
module can be used to generate the transition terms
efficiently. In fact, on closer examination, the
implementation of the state machine maps very closely to
the state diagram. Transitions from one state to another
result in a connection from the starting-states register to
the entered-states register. Logic complexity can easily be
estimated directly from the state diagram. Because only a
single logic module is required to implement even the
most complex transition, the entire machine runs easily
at the 125 Mhz clock rate.

5B4B Symbol Decoder

Once a symbol has been aligned, the data must be extracted by
converting the 5-bit input from the PHY into a 4-bit data word
that is sent to the MAC. The logic diagram for this decoder is
shown in Figure 15. Symbol conversion is done in accordance
with the 4B5B decode table, Table 1. Implementation of the
decoder in the ACT3 family is automatically generated from
the logic equations developed from the encoding table by
using the ACTmap tool. As shown in Figure 15, the full decode
requires only 24 modules and only two levels of logic, easily
meeting the speed required for the 25 Mhz clock.

37

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

38

Figure 15. 5B4B Decoder Schematic Diagram

D D3
ore1n
NCLK
CLR
N1 =]
CLR
N2 2
N1 = v
GND < oY E Jron)oX-) a
N3 D 2 ore1n
N4 E E B—pCLK
INT_CLK28LR
N1
D2
Nz = CLR
NO < hamsa) X
N3 2
N4 E
CLR NO o
=
N4
D([3:0) d
Jgsym '-@ v 5 o mox
D1 s d orcin
oreia CLK12S % CLK
hCLK CLR
CLR
CLRB
CLR A
TSYM .@ v 5 3l R
RSYM B .
orein
CLK125 CLK
Nom—F 9 Do - iR
orcin
INT_CLK2S j—CLK CLR
CLR
CLR '__T
J1sYM -ﬂ ¥ gl a1z
I1s¥yM Drcis
cLK12S @ CLK
CLR
CLR
reas
CLR ———————ChcLr
INT_CLK2S5 ——————fcrock
ate.o) |—E— N (4:0]
BI9:5) ST (4 0)

Using FPGAs to Implement a 100Base-X Convergence Sublayer

Receive State Machine Diagram

The RECEIVE state diagram is shown in Figure 16. The
machine begins in the START state and waits for the reception
of a JK symbol pair. The RECEIVE state is entered upon the
reception of this pair and exited only under one or more of the
following conditions:

* Reception of a TR symbol pair (end of data packet)
* Reception of an idle (I) symbol (premature packet end)

* Reception of an invalid symbol (error condition)

Note that if an invalid symbol is received, the ERROR state is
entered to capture the event. This state is cleared only by
resetting the state machine.

Reset

TR+11+JK

Figure 16. Receive State Machine Diagram

39

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

Receive State Machine Logic

As shown in Figure 17, the schematic implementation of the
RECEIVE state machine requires only 4 logic modules and two
levels of logic. It easily meets the 25 Mhz clock rate required for
this portion of the design.

TR A
IT B
c
K
"; D onan)X Q u
INT_CLK25 g—@CLK
CLR
START B CLR
JK @
A
ve—2 B
ITe— %5\ v e ro1 Y)Y Q B RX
TR .»—4:”0“:) DFC1D
RX g—2] INT_CLK25 g—CLK
CLR
CLR
ERROR
C D Q| i
RX » 2 X RX__ERR
B - DFC1D B -
v R B——CLK
INT_CLK25 CLR

CLR.——T

LNK_T/F i

D([(3:0] M OATA[3:0]
Q(3:0) - RXDATA[3:0]

INT_CLK25 .—_——>cx..ocx

4B_PIPO

Figure 17. Receive State Machine Schematic Diagram

40

Conclusion

Carrier Sense and Link Monitor Circuits

SGNL_DET

The carrier sense and link monitor circuits combine outputs
from the transmit, receive, and PMD blocks to develop the
receiveError, carrierSense, and collisionDetect signals. The
logic for implementing this process is shown in Figure 18.

RX

Bl CR_SNS

ol |w (>
8
o

TX I

2 DCY B LNK_T/F

Figure 18. Carrier Sense and Link Monitor FPGA Logic Schematic

Conclusion

This application note has described the complete design of a
100Base-X convergence sublayer. Each building block has been
fully tested and documented and is available on disk to those
contemplating similar or related applications.

41

Using Actel FPGAs to Implement the 100 Mbit/s Ethernet Standard

42

Designing High-Speed ATM Switch Fabrics
by Using Actel FPGAs

The recent upsurge of interest in Asynchronous Transfer Mode
(ATM) is based on the recognition that it represents a new level
of both speed and simplification in telecommunication
networks. The most significant characteristic of ATM is that it
requires minimum cell processing in network nodes and in
links such as repeaters, bridges, and routers. This means that
ATM allows systems to operate at rates much higher than
current packet-switching systems allow. This improved
performance is due to higher media quality and to ATM
operation in a connection-oriented mode that guarantees
minimum packet loss. This low packet loss is the result of not
granting entrance to the network until completion of a setup
phase that allocates all necessary network resources.

To reduce the size of the internal buffers in switching nodes,
and thus to reduce the queuing delays in these buffers, the
information field length in ATM packets is kept relatively
small. As a result, as packet size goes down, the speed
requirement for each switching node on the network goes up.
In general, to keep packet loss to a minimum, the throughput
of ATM switching nodes must be in the 1-gigabit-per-second
range.

This application note describes how to design typical
high-speed switch fabrics that route ATM packets on
broadband networks. Switch fabric is a term used to denote a
large group of basic switching building blocks connected in a
specific topology. The design, analysis, and implementation of
these building blocks will be described.

43

Designing High-Speed ATM Switch Fabrics by Using Actel FPGAs

ATM Switching Applications

44

One of the main tasks of an ATM switching node is to transport
ATM cells at high speed from its input ports to its destination
output ports. This task is performed by the switch fabric. The
switch fabric establishes a connection between an arbitrary
pair of input and output ports. Switch fabrics usually consist of
identical basic units called switching elements. The switching
elements are interconnected in a specific topology to create the
switch fabric.

The Actel ACT 3 family of FPGAs, with their high-speed
multiplexer-based architectures, are, as will be seen in this
application note, an excellent fit for applications, such as ATM
switching, that stress the heavy use of multiplexing. This
application note will describe in detail the designs of two
typical high-speed ATM switches:

* A pipelined 16:16 switch fabric
* A 16:16 multipath interconnect (MIN) switch fabric

ATM Switching Applications

Piplined 16:16 FPGA Switch Fabric

One of the simpler FPGA approaches to ATM switch fabric
design is shown by the straightforward 16:16 multiplexing
scheme in Figure 19. This switch fabric design is known as a
single-path network, because the same path is always used from
any given input to a given output. In this example, the switch
fabric has 16 input ports and 16 output ports. To achieve
connectability, it employs 16 16:1 multiplexers called FFMX16's
(Figure 20). Each of the 16 FFMX16s uses five Actel DFM6A
basic 4:1 multiplexed flip-flops connected in two pipelined
stages.

Each DFM6A (Figure 21) is a 4:1 multiplexer driving a flip-flop
and occupies a single Actel ACT 3 sequential logic module.
This multiplexed flip-flop introduces only one level of logic
delay in the design. In this implementation, once each of the
two stages of the 16:1 multiplexer is full, the pipeline outputs
data on every subsequent clock cycle. Thus, these 16:1
multiplexers are effectively implemented in one logic level,
providing improved throughput.

45

Designing High-Speed ATM Switch Fabrics by Using Actel FPGAs

46

Switch
Select

16-bit input bus

»{16:1 mux #»Outputz

16 2
Switch
Select .
4 L}
Y
Output 16
16

Figure 19. 16:16 Basic Multiplexer Switch Fabric

ATM Switching Applications

SO
CLK .—gI—SO

CLR

Figure 20. Two-Stage Pipelined 16:1 Multiplexer (FFMX16)

47

Designing High-Speed ATM Switch Fabrics by Using Actel FPGAs

48

DO orH—

D1

D2

D3
DFM6A

s1
DCLK

CLR

T

]

Figure 21. Multiplexed Flip-Flops DFM6A

Switch Fabric Driving Circuit

The driving circuit for each of the FEMX16s in the 16:16 switch
fabric is shown in Figure 22. As shown in the figure, selecting
data for the output of each FFMX16 requires 64 signals. This
number is based on the need for four switch-select inputs (S0,
S1, S2, and S3) for each of the FFMX16s. Switch-select signals
S0 and S1 operate with the first stage of each multiplexer, and
select signals S2 and S3 operate with the second stages. A drive
signal is received as a serial bit stream (SWSEL) that is
converted to parallel form by a 64-bit serial-to-parallel shift
register (SIPO64). Input data to the switch is received on the
lines D[15:0]. Notice that the FFMX16 shown in Figure 22
represents 16 FFMX16s, so the inputs are 16 bits wide.

ATM Switching Applications

mwsEL

PEeid

00000000000000000000000000000000000000OCO0O00000A00000
Pr AT DD UUCOOUIOARR AL RRS. T sy

»

0000000000

-c-'__nw x
e

Figure 22. Top Level View of the 16:16 Switch Fabric Design

It takes two clock cycles to fill the FFMX16 pipeline, after
which data is present on the OUTP[15:0] bus at each clock
cycle. The 64-bit data selection word S[63:0] from the shift
register is divided into four groups of 16 bits each, which are
used to select the appropriate routing through the switch
fabric. Note that there are separate clock lines for both the shift
register and for the switch fabric so that data can be clocked to
the output bus at a rate different from that of the shifted
control bits.

49

Designing High-Speed ATM Switch Fabrics by Using Actel FPGAs

50

Using ACTgen Macro Builder

The 64-bit serial-to-parallel shift register (SIPO64) is generated
by the Actel macro generator, ACTgen included with Desinger
Series software packages. With ACTgen’s graphical user
interface, you can build structured macros (counters, adders,
etc.) by simply clicking on a few menu choices. The ACTgen
Macro Builder then creates functions that effectively use the
Actel architecture. Each macro is developed with the goal of
limiting module count, maximizing performance, and
restricting loading to acceptable levels.

In this design, the SIPO64 is generated by simply choosing the
desired parameters from ACTgen’s graphical user interface
(64-bits, serial-to-parallel, active-low clear, active-high shift
enable, and positive-edge triggered clock). The created shift
register is then instantiated in the design with no need for
simulation. The ACTgen macros are already tested to
guarantee correct functionality.

Note In the N:N multiplexed structure shown here, any given
input may be broadcast to all outputs simultaneously.
Also, an advantage of this approach is that after only two
clock cycles, the pipeline is full and ready to output data.
A disadvantage of this scheme is that it allows only one
possible path, and no alternative paths, between each
input and output. To implement a multiple-path
capability, multiples of this switch fabric can be cascaded
together. However a better solution is the MIN switch
fabric.

ATM Switching Applications

16:16 Multipath Interconnect (Min) Switch Fabric

The primary advantage of a multipath interconnect network
(MIN) is that it permits the creation of alternative paths
between a given input and a given output in order to avoid
possible packet collisions. One implementation of a MIN
switch is the two-section Banyan network shown in Figure 23.
This network consists of four stages that drive a second group
of four. The second group is made up of the first four stages
with a reversed topology—it is the mirror image of the first.
Adding this second half produces a complete MIN switch
fabric in a minimum number of stages.

The first four stages (see Figure 23) enable any output to be
reached from any input via one specific path. This is the
standard Banyan configuration. The second four stages use a
reversed Banyan topology. Together, the two sections provide
the multiplicity of paths required for a MIN switch fabric. That
is, in an N: N MIN switch fabric, N internal paths are available
to reach any output from an arbitrary input.

Each basic switching element used in this switch fabric is a 2:2
switch. (See Figure 24.) Depending on the value of switch line
SW, the data will be either passed or crossed between the input
and output lines. Figure 25 shows the implementation of the
basic switching element using Actel DFME1A ACT 3
multiplexed flip-flops. As shown in the figure, two multiplexed
flip-flops are required to implement the switching element.
The truth table for the basic switching element shown is given
in Table 2.

51

Designing High-Speed ATM Switch Fabrics by Using Actel FPGAs

52

16:16 Banyan network

16:16 Reversed Banyan network

'
—— — — 1
-1 ——
[

- ——

el
1
'
+
-3 —1

'
- ——

'
1
[
1

_] [
R (VAN

|
=

A0

s i

l_

X

___ ___E_

N

L

Legend
:lj = 2:2 basic switching element

L

[

' -
N
e
WOV

\‘t
% \I

LJ

Figure 23. 16 X 16 Mulltipath Interconnect Network (MIN) Switch Fabric

ATM Switching Applications

B e S IV

Figure 24. Possible Signal Paths in a 2:2 Basic Switching

Element
.
sw . ql:FMElA
‘ CLK
A PE— - .
DFME1A
CLK) ® CLK

Figure 25. 2:2 Basic Switching Element SWCELL

53

Designing High-Speed ATM Switch Fabrics by Using Actel FPGAs

54

Clock Enable Switch
CLK E SW Yo Y1
X 1 X Asin Asin
previous previous
state state
T 0 0 A B
T 0 1 B A

Notes: T = Triggered on positive edge of clock

X = Don’t care

Table 2. Truth Table for 2:2 Basic Switching Element SWCELL

ATM Switching Applications

Assuming an N: N MIN switch fabric, the number of stages in
the network is 2log,N. If N = 16 (as in the present case), the

MIN switch fabric is implemented in eight stages. Thus, a 16:16
MIN can be constructed of eight stages, with each stage
consisting of eight 2:2 basic switching elements.

Switch Fabric Driving Circuit

The driving circuit for the MIN network is similar to the one
used for the multiplexer-based switch fabric described in the
previous section. As shown in Figure 26, the switching
elements (SWCELL) are connected to each other to implement
the topology shown in Figure 23. The SW lines of the switching
elements are driven by the outputs (S[63:0]) of a 64-bit shift
register. The S[63:0] signals are received as a serial bit stream
(SWSEL) and are converted to parallel form by a 64-bit serial-
to-parallel shift register (SIPO64). Input data to the switch is
received on the lines IN[15:0] and is clocked to the outputs
once the SWCELLSs are enabled.

It takes eight clock cycles to fill the switch fabric pipeline, after
which data is present on the OUTP[15:0] bus at each clock
cycle.The 64 bits of data selection word (S63:50) from the shift
register are used to select the appropriate routing through the
switch fabric. Note that there are separate clock lines for the
shift register and for the switch fabric so that data can be
clocked to the output bus at a rate different from that of the
shifted control bits S[63:0].

55

Designing High-Speed ATM Switch Fabrics by Using Actel FPGAs

SIFO6e Q6 -Eei
Is3E, w1

N0 A lro ra1 10 A o r2 20 A o _rac
o rigy o r2gy o raoy
so bea pagy ST bea oy
EN N N
cL: = o
cL cwu cLx
swsEL
N 2 o 1 18 A o r2 24 A o .
N potiyg o L2y o a3y
s1 SUERE 1ir2 23
W] EN EN N
cL c cu
cu cL cL
i
4
N A o 1 18 A o 12 21 A o r3
N N o L2y o L34y
o s2 b1 ra 1 rzyy b1 1.3
e . Ptim
EN N
cL cr cu
lsurerIn cu cL cL:
ACLR
lsHIFTEN
TN A o r1 112 fro 1.2gy 23 A o gy
TN
s3 e cagy 1 rogy 1 r3
=N N =N
S cr cr
cu crx oL
Q18 INg A o ra 11 A ko 1z 28 A 9 r3
Q1 N o iy po L2gy
Q1e
15 % sa bea ra 1 r2 1n3
SiarE i Ll 1 r2gy
813} o - - ot
Q11}-<44 [% cLk cLk
Q19
SHENCLR &3
Q7] N1 A o r1 CEEPN ko rz 12 A o r3
ask= N o L1y o 123
Q!
o = ED 1r ey oy 1 x3
Q3E
Q3] N EN =N
J-pym=s cu cu =
Qo cr cwL cLx
iN12 N o ra 9_a ro r2 s __a o r3
N1] e |
EN se e a1 e r2 b2 13
e oy Y o g oW ST
EN N
cL cu cu
cLxeGF cL cLx cL
>.
IN1a IN 0 L1 PEIPN ro_r23g 23 A o r3yg
N IN1S
2 s7 by migg i rayg vy
X EN N E
cL cL <
[<LK oL <L
18
] 1nBUF - 1nsUP ansor 1nour
] o _pa; x 4 P ¥ 1N P8 P: ¥_INgs INEI2 P x_3In
@

T
Ingpl Pa; vy INL 5 _PA X 1N x%_vﬂ‘x 3 Pa; ¥ In
'———-‘E&I}—I =2 22ell [g L Ed} o Ea
IE2 P ¥ I TRIN ¥_In IgpioP. Y INgO INgle PA ¥ N
sweLk crx
or

g3 PéﬁD X Ingg Tpgev FA%D X ’"". n‘upb_nxb ¥ INigy xr‘u_m\w_ﬁr_x&.

Figure 26. Top-Level View of the MIN Switch Fabric Design

56

ATM Switching Applications

o <

38 A 68_A

>
g
id

=
4

R R R X

I 3 = o
R %
= [o
kk
o o

R
- o
kk
v
o a
N
>
>
it
r
°
®

%

X CL oL

a
[

ik
{3l
u
s
R IR
B
E o
3
3
n
o
T
I
,
I x
x
2 4
= o
o
.
2
Y]
3
td
R
g
Ii-JF
n
F » o
x
| ,l
If
B
.
s 2
£k

et
n
e
x

A10A

30 .
O Lci 40 ko L= A ko L6 jro 7
..
b1 royy -
b1 rsyy 1 veyy F%.] =
X, = = = cu
cL crL cLK
cux L cu
32 71 a
3 ko regg zaz o vsgg 21 ko regy PN o 75y o mrez
1 ey b ragy s cogy » Pi—aes
L6 fri L7 =N
- - - = cu
o < e cix
cu cu cu
L34
A vo L4 7. A pr o
potigy as 2 ko ragy 34 a o Log 62 A ko g oo
TN by
i Cogy by o L1 v - - L —gxas
o - . = . cu
cu oo co L
cu . cux
LIs 73 A
A ko g 33 A ko reg 63 ko 1og
1 L:. vl L bea LW‘
= = . <
© L
crx cu cw
o ragg
o eagy

b reyg
cvi
cvi
c
1312 , o L412 o
o o3 1z A o vrs 13 a o rogp 10 A ko r2a ®13
fri L. 1
Pt s ragg 1 e ba r3as o1
v - x =
cu cri cui crx
v o crx
L33 Lo o 7 __A ro s
18 A o rayg ryga a o reyg 1 o _rae F———_re1e
s reas =
o2 rsyg ey rey 1 Lggs gEN F———=avre1s
e e [= Excr
cw
cui cr crx

ourmur ouraur oursur ouTmur
Leo D 'AD _OUT! L84 D AD 8 D 'AD _OUT! L8212 p AD O 2
= 2:& ¥ = Ewrﬂ = l?,.ﬁ &

1 D AD O [FELLE-) E WAD °'-'"‘." e o Do_ &m ouTyg i‘ﬁ_gwm‘a
a2 D 'AD OUT) 86 D ap OUTES 810 D AD ouTRzo 814 p ADOUTRS 4

o
£]
N
o

res [S[gpa curgg ouTer re11 2 ngoutrlx 15 D ADOUTRE S

57

Designing High-Speed ATM Switch Fabrics by Using Actel FPGAs

Note The complete multipath interconnect switch fabric is
implemented by using 128 (8 x 8 x 2) multiplexed
flip-flops of the type DFME1A. The straight multiplexed
switch structure discussed in the previous section
requires 80 (5 x 16) DFM6A multiplexed flip-flops.
However, this size differential does not translate for
larger values of N (where N is the number of input and
output ports). As N gets larger, the number of modules
required to implement the MIN network does not
increase as rapidly as it does for the simple mux-
structured network. Also, notice that the multiplexed
flip-flop used in the MIN network is a 2:1 type, whereas
the straight mux switch fabric requires a 4:1 type. The 2:1
multiplexed flip-flop offers the advantage that, because
of its lower fanin, it is easier to route on the Actel
software.

58

Timing Analysis

Timing Analysis

Conclusion

The MIN switch fabric discussed here can be implemented in
most Actel ACT 3 devices, such as the A1425A, the A1440A,
A1460, and the A14100A. The timing analysis given in this
section was obtained from the A1440A-2.

The MIN switch fabric can be operated as fast as the slowest
switching element can switch its data from input to output.
The basic switching element has a 5.7 ns clock-to q (input-to-
output) delay, along with 0.7 ns of setup time. Hence, the
maximum frequency of the switch fabric clock is 156 MHz. In a
16:16 switch, this provides a maximum throughput of 2.5
gigabits per second. Note that it takes eight clock cycles for
data to move from the switch fabric input to its output (about
51.2 ns). However, as in all such pipelines, once all stages of the
network are filled up, data is output at every subsequent clock
cycle.

The basic concept behind switch fabrics is multiplexing data
from input ports to outputs. The multiplexer-based
architecture of Actel FPGAs fits this requirement. High-speed
switching networks of almost any topology can be
implemented efficiently using the multiplexed flip-flops in the
Actel library. Each of these flip-flops is mapped to only one
sequential module within the FPGA to take maximum
advantage of the die area within the chip.

59

Designing High-Speed ATM Switch Fabrics by Using Actel FPGAs

60

Generating/Checking CRC for IEEE 802.3
(LAN Interface)

The Carrier Sense Multiple Access with Collision Detection
(CSMA /CD) media access method is the means by which two
or more stations share a common bus transmission medium.
IEEE 802.3 is a standard for local area networks (LAN)
employing CSMA /CD as the access method.

IEEE 802.3 consists of submodules such as Receiver,
Transmitter, Clock Synchronization, and CRC, as shown in
Figure 27.

The focus of this application note is the design of a Cyclic
Redundancy Check (CRC) submodule compatible with the
IEEE 802.3 protocol. This includes generating the CRC code

before transmission and checking the coherency of the data at
receiver time.

IEEE 802.3 Protocol
@ Clock Synchronization

Figure 27. IEEE 802.3 Protocol Submodules

Receiver

61

Generating/Checking CRC for IEEE 802.3 (LAN Interface)

Cyclic Redundancy Check

CRC is a way to detect small changes in blocks of data.
Although a few errors in a text file may be acceptable, when
transmitting a computer program, an error of even 1 bit is
sufficient to make a program faulty. An error-correcting
protocol triggered by a CRC error detector can provide
protection. The CRC code calculation usually is different from
one protocol to another. This application note focuses on the
LAN 802.3 protocol algorithm and includes a design
implementation and the issues involved in this
implementation.

IEEE 802.3 Frame Stfructure

62

A Media Access Control (MAC) frame packet is partitioned
into six major sections: Preamble, Destination, Source Address,
Byte Count, Data Field, and Frame Check Sequence (FCS).
Table 3 demonstrates the LAN frame structure.

Table 3. LAN Frame Structure

Preamble 8 Bytes
Destination Address 6 Bytes
Source Address 6 Bytes
Byte Count 2 Bytes
Data Field 46 to 1500 Bytes
Frame Check Sequence (FCS) 4 Bytes

IEEE 802.3 Frame Structure

The Preamble field is used for synchronization between the
receiver and transmitter clock. This field has seven sequences
of 101010 followed by one byte of 10101011. This is the last byte
indicating the start of the frame—Start Frame Delimiter (SFD)
byte.

Each MAC frame has two address fields: the destination
address field and the source address field. The destination field
specifies the station or stations for which the frame was
intended. The source address field indicates the station
sending the frame.

The Byte Count field is a 2-byte field; its value indicates the
number of logical link control (LLC) data bytes in the data
field.

The data field contains a sequence of n bytes that may
arbitrarily appear in the data field. The maximum size of this
field is (2 x (address size) + 48)/8 bytes, and the minimum
frame data is ((8 x n) + (2 x address size) + 48) bits.

The FCS field contains CRC code. This field is 4 bytes long and

is used to check the integrity of the transmitted data on the
LAN protocol.

63

Generating/Checking CRC for IEEE 802.3 (LAN Interface)

CRC Module Design

64

The first task in designing a CRC module is to find and
understand the linear algebra that represents the CRC code
calculation. The CRC algorithm operates on a block of data
transmitted serially as a unit. This block of data can be looked
at as a large numerical value. The CRC algorithm divides this
large number by a magic number—the CRC polynomial. This
operation will leave the remainder with a unique CRC code.
After CRC code calculations, the resulting CRC number is
usually stored along with the data. The following describes
this linear division for a 32-bit 802.3 LAN controller:

GOX) = X324 X26 + X2 4 X2 4 X16 1. X124 11 1 X10
XXX+ X+ X2+ X 41

When data is received from storage, the unique CRC code is
received along with the data. The CRC design algorithm can be
repeated, and the remaining results should be the magic CRC
number. This number for LAN 802.3 protocol is DEBB20E3 hex,
and since the number is inverted before transmission on the
line, it is C704DD7B hex. When checking for validity of data,
any other remainder in the CRC register is an indication of
error.

The CRC design interface for IEEE 802.3 is completely
synchronous and register intensive. This makes it ideal for
Actel architecture. CRC design consists of many add and shift
operations in every clock cycle. This makes it an ideal choice
for behavioral design entry methodology. Using a schematic
design tool is not advisable, since design is error prone and
schematics are hard to change.

Design Implementation

Design Implementation

The following is the crc_design file implemented in ACTmap
VHDL with some predefined sequential procedures that can be
used to define this design. The behavioral code is then
processed by Actel’s VHDL synthesis and optimization tool,
ACTmap. ACTmap is a computer-aided design tool for
working with the Actel families of FPGAs. It performs three
basic functions:

e PALASM2, VHDL to netlist translation
* Netlist Optimized mapping
¢ /O insertion

ACTmap reads the PALASM2, or VHDL source file and
translated it into either an EDIF or an ADL (Actel Design
Language) output file or Verilog netlist. The output file that it
generates is optimized for a specific family of Actel FPGAs
(ACT 1, ACT 2, 1200XL, or ACT 3).

LAN 802.3 also includes the Receiver and Transmitter
submodules. Both Receiver and Transmitter submodules are
counter intensive. The Actel ACTgen macro generator can
create structural macros such as counters that are optimal for
Actel devices. These structural blocks can easily be instantiated
through Actel VHDL. Even though receiver and transmitter
designs are not the focus of this application note, it is
informative to know that the ACTgen module generator can
easily be linked to the Actel VHDL entry tool.

65

Generating/Checking CRC for IEEE 802.3 (LAN Interface)

r_crc_chk

r_bit_in ——

r_active

t_active

t_bit_out —@

t_crc_start

s_reset

66

This application note is focused on generating the correct CRC
code at the transmission time and checking for validation of

frame data at receiving time. A functional block diagram of the
CRC design is shown in Figure 28.

bit 31 T

"y

crc_data_in

l

crc_register

32 bits

Yvy

crc_data_out

Figure 28. Functional Block Diagram

_>

r_crc_error

_>

final_bit_out

VHDL Cocde Description

VHDL Code Description

The following is the ACTmap VHDL code representing this design:

--LIBRARY ieee; used for simulation
--USE ieee.std_logic_1164.ALL; used for VHDL simulators

entity crc_data_in is

--decides which data should be
-- sent to crc_register entity.

port (rcv_active,trm_active: in bit;
rcv_bit_in, trm_bit_out,crc_reg_b, trm_crc_start: in bit;
crc_data_in: out bit);

end crc_data_in;

architecture archi of crc_data_in is
signal mux_data_out: bit;

begin
mux_data_out<= trm_bit_out when (trm_active = 'l') else
rcv_bit_in when (rcv_active = '1') else
101;

--This will feed bit 31 of crc_register back in, with the new data.
--It also disables the crc calculation when transmitting crc code.

crc_data_in <= not(trm_crc_start) and (crc_reg_b xor mux_data_out);
end archi;

entity crc_register is
--This is the main module that applies the crc algorithm to data.

port (clk,system_reset,crc_data_in: in bit;
rcv_active, trm_active: in bit;
crc_reg :out bit_vector (31 downto 0);
crc_reg_b :out bit);

end crc_register;

architecture crcreg of crc_register is
signal nextreg, temp :bit_vector (31 downto 0);

signal reset_crc :bit;

begin

reset_crc <= 'l' when system_reset = 'l' else
'1' when ((rcv_active = '0') and (trm_active = '0')) else
IOI,.

67

Generating/Checking CRC for IEEE 802.3 (LAN Interface)

crc_reg <= nextreg ;

DFFC_V(temp, reset_crc, clk, nextreg);

temp <= (nextreg(30 downto 26) &
(nextreg(25) xor crc_data_in) &
(nextreg(24 downto 23)) &
(nextreg(22) xor crc_data_in) &
(nextreg(21) xor crc_data_in) &
(nextreg (20 downto 16)) &
(nextreg(15) xor crc_data_in) &
(nextreg (14 downto 12)) &
(nextreg(1l) xor crc_data_in) &
(nextreg(10) xor crc_data_in) &
(nextreg(9) xor crc_data_in) &
nextreg(8) &
(nextreg(7) xor crc_data_in) &
(nextreg(6) xor crc_data_in) &
nextreg(5S) &
(nextreg(4) xor crc_data_in) &
(nextreg(3) xor crc_data_in) &
nextreg(2) &
(nextreg(l) xor crc_data_in) &
(nextreg(0) xor crc_data_in) &
crc_data_in);
crc_reg_b <= nextreg(31l);

end crcreg;

entity crc_data_out is
-- This is the crc_data_out module that checks for errors.

port (rcv_active, trm_active: in bit;
trm_data, crc_reg_b: in bit;
trm_crc_start,rcv_crc_chk: in bit;
crc_reg: in bit_vector (31 downto 0);
trm_bit_out,rcv_crc_error: out bit);

end crc_data_out;

architecture archi of crc_data_out is
signal crc_constant : bit_vector (31 downto 0);

begin

trm_bit_out <= (not crc_reg_b) when ((trm_active = '1l') and (trm_crc_start = '1l')) else
trm_data when (trm_active = '1l') else
IOI'.

-- checking for constant magic number

crc_constant <= x"c704dd47b";

68

VHDL Code Description

rev_crc_error <= '0' when (rcv_active = '0') else
'0' when ((crc_reg = crc_constant) and (rcv_crc_chk = '1')) else
'l' when (rcv_crc_chk = '1') else
IOI;

end archi;

-- This is the top-level module that binds all entities together.
entity enetcrc is

port(clock, t_crc_start,r_bit_in,t_bit_out :in bit;
s_reset,r_active, t_active,r_crc_chk :in bit;
final_bit_out,r_crc_error :out bit);

end enetcrc;

architecture structure of crc_design is

component crc_data_in

port (rcv_active,trm_active : in bit;
rcv_bit_in,trm_bit_out,crc_reg_b,trm_crc_start : in bit;
crc_data_in : out bit);

end component;

component crc_register
port (clk,system_reset,crc_data_in: in bit;
rcv_active, trm_active: in bit;
crc_reg :out bit_vector (31 downto 0);
crc_reg_b :out bit);

end component;
component crc_data_out
port (rcv_active, trm_active: in bit;
trm_data, crc_reg_b: in bit;
trm_crc_start,rcv_crc_chk: in bit;
crc_reg: in bit_vector (31 downto 0);
trm_bit_out,rcv_crc_error: out bit);

end component;

for all: crc_data_out use entity work.crc_data_out (archi);
for all: crc_data_in use entity work.crc_data_in(archi);
for all: crc_register use entity work.crc_register (crcreg);

signal bit31,data_in :BIT;
signal crc32bit_reg :bit_vector (31 downto 0);

69

Generating/Checking CRC for IEEE 802.3 (LAN Inferface)

begin

Ul:crc_data_in port map
(r_active, t_active,r_bit_in,t_bit_out,bit31,t_crc_start,data_in);

U2:crc_register port map
(clock, s_reset,data_in,r_active, t_active,crc32bit_reg,bit31);

U3:crc_data_out port map
(r_active, t_active, t_bit_out,bit31, t_crc_start,r_crc_chk,crc32bit_reg,
final_bit_out,r_crc_error);

end structure;

70

The entity crc_data_in acts as a switch between receiver and
transmitter. The code in this module is designed to use the
same circuit for the data receiver CRC check and the CRC code
generator at transmission time. In this module, when t_active
is enabled, it enables the CRC code generation. The T_bit_out
bit will be half added (XOR) with bit 32 of the CRC register and
will be shifted in the CRC register for CRC code generation.
T_bit_out will also be sent on line serially. At the end of the
Byte Count field the t_crc_start bit in the top level will be set.
This indicates that the generated CRC code needs to be
transmitted. The 4 bytes of the CRC code are transmitted with
bit 31 first and bit 0 last.

VHDL Code Description

The crc_register entity generates the CRC code at transmission
time and applies the polynomial division on data bits at
receiver time. In this module, the DFFC_V predefined
procedure of ACTmap_VHDL is used. The cyclic redundancy
check is computed at transmission time as a function of all the
frame data fields except Preamble and FCS (CRC). The CRC
algorithm applies modulo 2 division on data; this means it uses
the XOR operation instead of the normal add and subtract.
Note that bit 31 of the crc_register is folded back into the
polynomial operation. When t_crc_start is set, the uniquely
calculated CRC code will be shifted on line at every clock
period. As the most significant bit is shifted out, the least
significant bit will be replaced by 1.

In the receiving side, all previously mentioned fields except for
Preamble (including FCS) run through the CRC algorithm
again. When the last CRC code is received, the CRC check flag
will be set (r_set_chk).

The last entity, crc_data_out, will check the number remainder
in the crc_register for the constant magic number C704DD7B
hex. Any other number produces an error.

The top-level design, enetcrc, instantiates these modules and
binds them together.

71

Generating/Checking CRC for IEEE 802.3 (LAN Interface)

Synthesis and Optimization

Conclusion

72

The VHDL code described in the previous section is
synthesized and optimized by ACTmap, which generates a
gate level description optimized for Actel’s architecture.
ACTmap can output the results in any of the following netlist
formats: EDIF, Verilog, ADL, and Viewlogic. The following
results were obtained from ACTmap targeting an ACT 3
device.

Figures 29 through 34 show the schematic representation of the
netlist generated by ACTmap.

Trying to find better ways to quickly bring high performance
products to market is not new. What is new is a design
methodology combining the use of Field Programmable Gate
Arrays (FPGAs) with high-level design entry in high-speed
systems. New design flows use sophisticated synthesis tools to
translate generic high-level design description into device
specific netlists. Synthesis targets specific FPGA architectures
and devices for optimum fit and performance. The Cyclic
Redundancy Check circuit described in this application note
takes advantage of high-level design entry capabilities of Actel
tools.

DEF_NET_292 [}

NBUF

T_ACTIVE)J@.DY_

NBUF

<

Conclusion

§l DEF_NET_295

R_BIT_IN

¥

DEF_NET_237 I}

DEF_NET_397 I}

A
B) "~)] DEF_NET_118

#l PEF_NET_240

T_mam_our > EAISANS, ¥ o

S_RESET

R_ACTIVE

iNmUF

mxam

CLK

orcim

4l DEF_NET_243

JFINAL_BIT_OUT

§l DEF_NET_297

oursur
0_‘_31-:.\,’{ L AD
B
insUF AN Y
Pal c ot 1=
veur
PAI

{ll PEF_NET_409

Figure 29. Schematic Representation of the Top Level Design, enetcrc

73

Generating/Checking CRC for IEEE 802.3 (LAN Interface)

) @ oEr_NET_183
orcis
cLK

CLR

@@l pEF_NET_177

Cul |

prcis
CLK

CLR

DEF_NET_168 |}

DEF_NET_292 }—

DEF_NET_295 }—/

prcis
CLK

prcis
CLK

CLR

CLR

B
c p DEF_NET_132
D

Ml DEF_NET_165

pEr_NET_162 I}

Q] @ oEr_NET_150

prcis
CLK

DEF_NET_171 |}

T—’;)E’—

CLR

@l DEF_NET_1180

A

PAl

inBUF

B B'

T_CRC_START

DEF_NET_118 I}

DEF_NET_397

Figure 30. Schematic Representation of the Top Level Design, enetcrc (Continued)

74

Conclusion

fl PEF_NET_210

DEF_NET_292 I} @ 5 = J—. DEF_NET_213
DFC1B
[:D Q I — \CLK
DFC1B SR
@———PHCLK
CLR
DEF_NET_297 .,1 T —{il DEF_NET_207
DEF_NET_198 [} Q DEF_NET_201
5 DFC1B
Q CLK
DFC1B CLR
[CLK
CLR
T §l CEF_NET_204
Q
Q il CEF_NET_216
DFC1B
CLK ::‘CIB
CLR c:;

A
) >
DEF_NET_1180 B

Figure 31. Schematic Representation of the Top Level Design, enetcrc (Continued)

75

Generating/Checking CRC for IEEE 802.3 (LAN Interface)

pEF_NET_150): v

@—WoEr_nNET_ 162

ore1n
CLK

CLR

prcis
CLK

CLR

DEF_NET_295 Jl—

pEF_NET_183 -

pEF_NET_1180 i——)

prcis
CLK

CLR

i oEF_NET_156

fl PEF_NET_189

DEF_NET_155 [}

pEF_nET_132 |}

pEF_NET_215 I

pEF_NET_292 [}

preis

DEF_NET_297 ._I

CLR

oreis

CLK

CLR

| M oEr_NET_ 192

| @ pEr_NET_122

) o=r_neT_228

DEF_NET_204 |

Figure 32. Schematic Representation of the Top Level Design, enetcrc (Continued)

76

Conclusion

DEF_NET_237

DEF_NET_234
DEF_NET_231
DEF_NET_219
DEF_NET_243
DEF_NET_240

DEF_NET_124

DEF_NET_171 o Joran)

DEF_NET_156

DEF_NET_201

DEF_NET_198

DEF_NET_189

DEF_NET_177

DEF_NET_216

DEF_NET_213

DEF_NET_210

DEF_NET_207

DEF_NET_234
DEF_NET_231
L Q Q) DEF_NET_237

L

brein orcin
CLK CLK
CLR CLR

DEF_NET_295

L

DEF_NET_216 §l CEF_NET_292

A
h's
DEF_NET_1180 B JJ *" Q—1#l PEF_NET_219
orcin

CLK
PA Y b CLR

crock

HELKBUF

DEF_NET_81

Ql—{l PEF_NET_198

DEF_NET_297

Figure 33. Schematic Representation of the Top Level Design, enetcrc (Continued)

77

Generating/Checking CRC for IEEE 802.3 (LAN Interface)

r—. DEF_NET_168

pEF_NET_165 I} Q

pEF_NET_295 I} r
19)

DEF_NET_1180 [}

Q |l DEF_NET_171

§il DEF_NET_231

DEF_NET_228 [} Q|

N
__:) xom YX DEF_NET_81

DEF_NET_192 [} Q {il CEF_NET_195
prcis
CLK

DEF_NET_292 I} ch

DEF_NET_297 I}

DEF_NET_124
A
5)
DEF_NET_122 I} OUTBUF

\ Y
< on3 =] AD _CRC_ERROR

szr_na:'r_zaos.—r pAD . v D
o >—’_ng.|>_r—_—/

Figure 34. Schematic Representation of the Top Level Design, enetcrc (Continued)

78

